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Lecture 2

Linear and Nonlinear
Oscillators

Problem 2.1. Prove that

x(t) = x0 cosω0t+
ẋ0
ω0

sinω0t+
1

ω0

∫ t

0

sinω0(t− t′)f(t′)dt′ , (2.1)

gives a solution to

d2x

dt2
+ γ

dx

dt
+ ω2

0x = f(t) , (2.2)

with γ = 0. Verify that initial conditions are satisfied. Generalize the solution
Eq. (2.1) for the case when γ 6= 0.

Problem 2.2. The function f(t) is shown in Fig. 2.1 (next page): it is equal
to zero for t < −∆t, and is constant for t > ∆t with a smooth transition in
between. Describe the behavior of the linear oscillator driven by this force in
the limits ∆t� ω−10 and ∆t� ω−10 .

Problem 2.3. Prove that

d2x

dt2
+ ω2

0x = 0 (2.3)

conserves the quantity x2(t) + ẋ(t)2/ω2
0 .

Problem 2.4. Assume γ = 0 in the equation

d2ξ

dt2
+ γ

dξ

dt
+ ω2

0ξ = f0e
−iωt . (2.4)
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Figure 2.1: Function f(t).

Show that if ω � ω0 then one can neglect the term ω2
0ξ in the equation. In other

words, the oscillator responds to the driving force as a free particle. This fact
explains why the dielectric response of many media to x-rays can be computed
neglecting the binding of electrons to nuclei.

Problem 2.5. Draw a phase portrait of a linear oscillator with and without
damping.

Problem 2.6. Derive the following equation:

ω ≈ ω0

(
1− θ20

16

)
, (2.5)

directly from

1

2
Tω0 =

1√
2

∫ θ0

−θ0

dθ√
(cos θ − cos θ0)

. (2.6)

Problem 2.7. Fig. 2.2 (next page) shows a numerically computed trajectory
for a pendulum with ω0 = 1. Try to figure out what is the energy E for this
trajectory and explain qualitatively the shape of the curve.

Problem 2.8. Verify that

a = − 3β

8ω0
− 5α2

12ω3
0

, (2.7)

gives the result

ω ≈ ω0

(
1− θ20

16

)
, (2.8)

for the pendulum.
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Figure 2.2: Dependence of θ̇ versus time for a pendulum trajectory.



Lecture 3

Lagrangian and
Hamiltonian equations of
motion

Problem 3.1. For a linear oscillator, the Lagrangian is

L =
m

2
ẋ2 − mω2

2
x2 .

Find equations of motion.

Problem 3.2. Consider a pendulum of length l and mass m, supported by a
pivot that is driven in the vertical direction by a given function of time ys(t).
Obtain the Lagrangian and derive equations of motion for the pendulum (Ref.
G. Sussman and J. Wisdom. Structure and Interpretation of Classical Mechan-
ics. MIT Press, 2001, page 49).

Problem 3.3. For the system in Problem 3.2, analyze particle’s motion in a
rotating frame using the Lagrangian approach (Ref. J. Josè and E. Saletan.
Classical dynamics: a contemporary approach. Cambridge University Press,
1998, pages 74-76).

Problem 3.4. Derive the following equations of motion:

dp

dt
= qE + qv ×B , (3.1)

from the Lagrangian

L(r,v, t) = −mc2
√

1− v2/c2 + ev ·A(r, t)− eφ(r, t) . (3.2)
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Problem 3.5. Write the same Lagrangian,

L(r,v, t) = −mc2
√

1− v2/c2 + ev ·A(r, t)− eφ(r, t) . (3.3)

in the cylindrical coordinate system with z directed along the magnetic field.
Derive the equations of motion.

Problem 3.6. Do the same for the coordinate system (x′, s, z) shown in Fig.
3.1.

Figure 3.1: The coordinate system x′, s, z. The circle radius is equal to the
Larmor radius R. The coordinate x′ is defined as a difference between the polar
radius r and the circle radius R.

Problem 3.7. The magnetic field given by

B = (0, 0, B0) , (3.4)

can be represented by a different vector potential A = 1
2 (−B0y,B0x, 0). Show

that the equations of motion are the same as for the vector potential used in
the notes,

A = (−B0y, 0, 0) . (3.5)

Problem 3.8. Find conjugate momenta in cylindrical coordinates of a charged
particle moving in an electromagnetic field, using the Hamiltonian

H =
√

(mc2)2 + c2(π − eA)2 + eφ . (3.6)

Problem 3.9. The angular momentumM of a particle is defined asM = r×p.
Find the Poisson brackets {Mi, xk}, {Mi, pk} and {Mi,Mk}, where the indices
i and k take the values x, y and z.

Problem 3.10. Simplify L and H (for a particle in an electromagnetic field)
in the nonrelativistic limit v � c.



Lecture 4

Canonical transformations

Problem 4.1. Show that the transformation Pi = λpi, Qi = qi, H
′ = λH,

where λ is a constant parameter, preserves the Hamiltonian structure of equa-
tions.

Problem 4.2. Using the Poisson brackets prove that the transformations

Qi = pi , Pi = −qi , (4.1)

and

Qi = pi , Pi = −qi , (4.2)

are canonical.

Problem 4.3. Find generating functions for the transformations

Qi = pi , Pi = −qi (4.3)

and

Qi = pi , Pi = −qi . (4.4)

Problem 4.4. Find generating functions for the contact transformation

Qi = fi(q1, q2, . . . , qn) . (4.5)

Problem 4.5. Find the generating function of the third type for the transfor-
mation

Qi = qi , Pi = pi . (4.6)
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This problem illustrates the fact that the choice of the type of the generating
function is not unique.

Problem 4.6. From equations

J =
1

2ω

(
ω2x2 + p2

)
. (4.7)

and

φ = − arctan
p

ωx
. (4.8)

express x and p through J and φ. Verify that the result agrees with equations

x = a(J) cosφ , p = −a(J)ω sinφ . (4.9)



Lecture 5

Liouville’s theorem.
Action-angle variables.

Problem 5.1. Derive

MJ2nM
T = J2n (5.1)

for n = 2.

Problem 5.2. Find the action-angle variables for the system with the following
potential

U(x) =

{
∞, x < 0
Fx, x > 0

(5.2)

Problem 5.3. Prove that |detM | = 1, where

|det M | =
∣∣∣∣dQ1dQ2 . . . dQndP1dP2 . . . dPn
dq1dq2 . . . dqndp1dp2 . . . dpn

∣∣∣∣ (5.3)

as the result of Hamiltonian flow.
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Lecture 6

Coordinate system and
Hamiltonian in an
accelerator

Problem 6.1. Check that equations

dr0
ds

= ŝ ,

dŝ

ds
= − x̂

ρ(s)
,

dx̂

ds
=

ŝ

ρ(s)
,

dŷ

ds
= 0 . (6.1)

hold for a circular orbit.

Problem 6.2. Fig. 6.1 shows the electron trajectory in a four-dipole chicane
(typically used for bunch compressions). Indicate the direction of axis x assum-
ing that the y axis is directed out of the page. Determine the sign of the orbit
radius ρ and the magnetic field direction of each of four dipoles along the orbits.
What happens with this sign if the particle is moving in the direction opposite
to the one shown in the figure?

Problem 6.3. Verify that from the definition of ρ in Eqs. (6.1) it follows that
the sign in equation

ρ(s) =
p

eBy(s)
. (6.2)
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Figure 6.1: Electron trajectory in a chicane. Assume that the y axis is directed
out of the page.

is correct for arbitrary sign of the charge e and the direction of motion in the
reference orbit.

Problem 6.4. Verify that Eqs. (6.1) and equations

∇φ = x̂
∂φ

∂x
+ ŷ

∂φ

∂y
+ ŝ

1

1 + x/ρ

∂φ

∂s
, (6.3)

(∇×A)x = − 1

1 + x/ρ

∂Ay
∂s

+
∂As
∂y

, (6.4)

(∇×A)s = −∂Ax
∂y

+
∂Ay
∂x

, (6.5)

(∇×A)y = − 1

1 + x/ρ

∂As(1 + x/ρ)

∂x
+

1

1 + x/ρ

∂Ax
∂s

, (6.6)

∇ ·A =
1

1 + x/ρ

∂Ax(1 + x/ρ)

∂x
+
∂Ay
∂y

+
1

1 + x/ρ

∂As
∂s

. (6.7)

hold for a circular orbit.

Problem 6.5. Find the Hamiltonian K for the following model Hamiltonian
H:

H(x,Πx, s,Πs) =
Π2
x

2
+ ω2(s)

x2

2
+ vΠs , (6.8)

where v is a constant. Prove that both Hamiltonians describe the same dynam-
ics.

Problem 6.6. Make canonical transformation (t,−h)→ (zt, p) using the gen-

erating function F2(p, t) = −ct
√
p2 +m2c2. Explain the meaning of the new

variables.



Lecture 7

Equations of motion in an
accelerator

Problem 7.1. The magnetic field Bs(s) of a solenoid cannot be described
with a single longitudinal component As of the vector potential. Show that
this magnetic field can be represented with the vector potential that has two
transverse components:

Ax = −Bsy/2 , Ay = Bsx/2 . (7.1)

.

Problem 7.2. Using

dt

ds
=
∂Πs

∂H
= −∂K

∂h
(7.2)

and the Hamiltonian H given in the lecture notes on p.60 as Equation (7.11),
show that

dt

ds
=

1

v

(
1 +

x

ρ

)
. (7.3)

Problem 7.3. Find terms in the Hamiltonian H responsible for the skew
quadrupole (the magnetic field given by the equation B = Gs(s)(−ŷy + x̂x)).

Problem 7.4. Using the vector potential

Ax = −Bsy/2 , Ay = Bsx/2 (7.4)
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for the solenoid and starting from the Hamiltonian

K = −
(

1 +
x

ρ

)[
1

c2
h2 − (Px − eAx)2 − (Py − eAy)2 −m2c2

]1/2
− eAs

(
1 +

x

ρ

)
. (7.5)

find the contribution to H of the magnetic field of the solenoid. [Hint: assume
that Bs is small and use the Taylor expansion in the Hamiltonian (7.5) keeping
linear terms and second order terms in Bs.]

Problem 7.5. Derive equation

1

2
ββ′′ − 1

4
β′2 +Kβ2 = 1 (7.6)

from equation

w′′ − 1

w3
+K(s)w = 0 . (7.7)

Problem 7.6. Find solution of equation

1

2
ββ′′ − 1

4
β′2 +Kβ2 = 1 (7.8)

in free space where K = 0.

Problem 7.7. Calculate a jump of the derivative of the beta function through
a thin quadrupole. Such a quadrupole is defined by K(s) = f−1δ(s−s0), where
f is called the focal length of a thin quadrupole.

Problem 7.8. A FODO lattice is a sequence of thin quadrupoles with alter-
nating polarities:

KFODO(s) =

∞∑
n=−∞

K0δ(s− nl)−K0δ

(
s−

[
n+

1

2

]
l

)
, (7.9)

where l is the period of the lattice. Solve equation

1

2
ββ′′ − 1

4
β′2 +Kβ2 = 1 (7.10)

for the FODO lattice and find β(s). For a given value of l find the maximum
value of K0 for which the motion is stable.

Problem 7.9. Consider two rings with circumferences C1 and C2. Assume
that C1 = λC2 and K2(s) = λ2K1(λs), and prove that β2 = λ−1β1(λs).



Lecture 8

Action-angle variables for
circular machines

Problem 8.1. Using equations

− tanφ =
βPx
x

+ α

α = −β
′

2

J =
1

2β

[
x2 + (βPx + αx)

2
]
, (8.1)

show by direct calculation of Poisson brackets that the transformation (x, Px)→
(φ, J) is canonical.

Problem 8.2. Find the major and minor half axes, and the tilt of the ellipse
shown below (next page).

Problem 8.3. Prove that the transformation (x, Px)→ (x̄, P̄x) with

x̄ =
1√
β
x , P̄x =

1√
β

(βPx + αx) (8.2)

is canonical. Prove that phase space orbits plotted in variables x̄, P̄x are circles.
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Figure 8.1: Phase space ellipse and a particle’s positions at consecutive turns.



Lecture 9

Field errors and nonlinear
resonances

Problem 9.1. Starting from the Hamiltonian

H =
1

2
x′2 +

1

2
K(s)x2 +

e∆B(s)

p
x (9.1)

transform to the action-angle variables using the following generating function

F1(x, φ, s) =
[x− x0(s)]2

2β

(
β′

2
− tanφ

)
+ xx′0(s) . (9.2)

Show that in this case

J(x, Px, s) =
1

2β

{
(x− x0)

2
+ [β (Px − x′0) + α(x− x0)]

2
}
, (9.3)

and obtain the Hamiltonian

Ĥ =
J

β
. (9.4)

Problem 9.2. What is the effect on the beam orbit of the error magnetic field
∆Bx(s) in the horizontal plane?

Problem 9.3. Solve equation

V (φ, I, s) +
1

β
Gφ +Gs = 0 . (9.5)

for the function G. Hint: seek solution in the form G(φ, I, s) = Re(Ĝ(I, s)e2iφ).
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Problem 9.4. Verify by direct calculation that G given by

G = − I

4 sin 2πν

∫ s+C

s

ds′∆K(s′)β(s′) sin 2(φ− ψ(s) + ψ(s′)− πν) (9.6)

satisfies equation

V (φ, I, s) +
1

β
Gφ +Gs = 0 . (9.7)

Problem 9.5. Show that the tune change is given by the following equation

∆ν =
1

4π

∫ C

0

ds∆K(s)β(s) . (9.8)

Recall that

ν =
1

2π

∫ C

0

ds

β(s)
. (9.9)

Problem 9.6. Calculate the beta beat and the tune change for a localized
perturbation of the lattice: ∆k = ∆K0δ(s− s0).



Lecture 10

Resonance overlapping and
dynamic aperture

Problem 10.1. Prove that the standard map defines a canonical transforma-
tion (In, θn)→ (In+1, θn+1).

Problem 10.2. Prove the following property of the standard map: for two

trajectories starting from the same initial value θ0 but with different values I
(1)
0

and I
(2)
0 , such that I

(2)
0 − I

(1)
0 = 2πm, where m is an integer, the difference

I
(2)
n − I(1)n remains equal to 2πm for all values of n.

Problem 10.3. Prove that equations

J = I − 2πn , φ = θ − 2πnt . (10.1)

define a canonical transformation, find the corresponding generating function
F2 and obtain the Hamiltonian

H′ =
1

2
J2 +K cosφ+ const . (10.2)
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Lecture 11

The kinetic equation

Problem 11.1. Write the Vlasov equation for a beam distribution f(x, Px, s)
in terms of variables x and Px.

Problem 11.2. Give a direct proof that the function

f = const e−J/ε0 = const exp

(
− 1

2βε0

[
x2 + (βPx + αx)

2
])

(11.1)

satisfies the Vlasov equation.

Problem 11.3. Action and angle variables are more convenient for a study of
phase mixing. Use these variables and find the limit of the distribution function
integrated over δ in the limit t→∞.
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Lecture 13

Primer in special relativity

Problem 13.1. Derive the Lorentz transformation when velocity v is at 45◦

to the z axis, v = v(0, 1/
√

2, 1/
√

2).

Problem 13.2. Using the matrix formalism, show that the inverse Lorentz
transformation is given by the following equations:

x′ = x ,

y′ = y ,

z′ = γ(z − βct) ,
t′ = γ(t− βz/c) . (13.1)

Explain the meaning of the minus sign in front of β.

Problem 13.3. A muon at rest has a mean life time of 2.2 µs. To what energy
one needs to accelerate the muon in order to get the life time (in the lab frame)
of 1 ms. The muon mass corresponds to 105 MeV.

Problem 13.4. A bunch of 1010 electrons with energy 15 GeV has a length of
100 micron and a radius of 30 micron (in the lab frame). What is the electron
density (in units of particles per cubic centimeter) in the beam frame?

Problem 13.5. Using the equations

kx = kx
′ ,

ky = ky
′ ,

kz = γ(kz
′ + βω′/c) ,

ω = γ(ω′ + βckz
′) , (13.2)

prove that ω = ck follows from ω′ = ck′.
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Problem 13.6. Prove that

cos θ′ =
cos θ − β

1− β cos θ
, sin θ′ =

sin θ

γ(1− β cos θ)
. (13.3)

Problem 13.7. A laser light of frequency ω copropagates with a relativistic
beam with γ � 1. Find the laser frequency in the beam frame.

Problem 13.8. Consider Lorentz transformation of fields in a plane electro-
magnetic wave propagating along axis z. The electric field is directed along x
and the magnetic field is directed along y with Ex = cBy. Derive the transfor-
mation formula for the absolute value of the Poynting vector of the wave.

Problem 13.9. An electromagnetic wave with the frequency ω and the elec-
tric field amplitude E0 occupies a volume with dimensions Lx × Ly × Lz. It
propagates along the z axis with fields that satisfy Ex = cBy. Using results of
the previous problem find the electromagnetic energy W of the wave in the lab
frame and the energy W ′ in a frame K ′ moving with velocity v relative to the
lab frame. Show that W/ω = W ′/ω′, where ω′ is the frequency of the wave in
K ′.



Lecture 14

Selected electrostatic and
magnetostatic problems

Problem 14.1. Show that at large distances from the center, the equation

φ =
1

4πε0

√
2

π

Q

σxσyσz

∫ ∞
0

dλ
e
− x2λ2

2(λ2σ2x+1) e
− y2λ2

2(λ2σ2y+1) e
− z2λ2

2(λ2σ2z+1)√
λ2 + σ−2x

√
λ2 + σ−2y

√
λ2 + σ−2z

. (14.1)

reduces to

φ =
Q

4πε0
√
x2 + y2 + z2

. (14.2)

Problem 14.2. Prove by direct calculation that the potential given by

φ(x, y, z) =
Q

2

∫ ∞
λ(x,y,z)

dλ′√
(a2 + λ′)(b2 + λ′)(c2 + λ′)

(14.3)

satisfies the Laplace equation.
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Lecture 15

Self field of a relativistic
beam

Problem 15.1. Verify by direct calculation that equations

E = −∇φ− ∂A

∂t
B = ∇×A (15.1)

applied to the potentials

φ =
1

4πε0

q

R , A =
Z0

4π
β
q

R . (15.2)

give the fields

E =
1

4πε0

qr

γ2R3
. (15.3)

and

B =
1

c2
v ×E . (15.4)

Problem 15.2. Given the form of the electric field

E = −∇φ− ∂A

∂t
B = ∇×A , (15.5)

make a plot of the dependence of E versus θ, where θ is the angle between r
and the (x, y) plane. Assume γ � 1.
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Problem 15.3. Using equations

E =
1

4πε0

qr

γ2R3
. (15.6)

show that in the limit γ →∞ the following relations hold∫ ∞
−∞

Exdz =
1

4πε0

2qx

ρ2
,

∫ ∞
−∞

Eydz =
1

4πε0

2qy

ρ2
. (15.7)

Problem 15.4. Derive the equation

E‖(z, z′) = − 1

4πε0

2

a2
(z − z′)

(
1√

a2/γ2 + (z − z′)2
− 1

|z − z′|

)
. (15.8)

for E‖ and analyze it considering limits |z− z′| � a/γ and |z− z′| � a/γ. Hint:
represent a thin charged disk as a collection of infinitesimally small rings.

Problem 15.5. Derive an expression for the field E‖(z) on the beam axis for a
Gaussian bunch using the result of Section 14.1 in Lecture 14. Assume σx = σy.

Problem 15.6. A bunch of particles in a future linear collider will have a
charge of about 1 nC, bunch length σz ≈ 200 µm, and will be accelerated in the
linac from 5 GeV to 250 GeV. Estimate the energy spread in the beam induced
by the the space charge, assuming the bunch radius of 50 µm.



Lecture 16

Effect of environment on
electromagnetic field of a
beam

Problem 16.1. Calculate the skin depth in copper (σ = 5.8 · 107 1/Ohm·m)
and stainless steel (σ = 1.4 · 106 1/Ohm·m) at the frequency of 5 GHz.

Problem 16.2. Given the tangential component B0e
−iωt of the magnetic field

on the surface, find the averaged over time energy absorbed in the metal per
unit time per unit area. Hint: compute the averaged over time z-component of
the Poynting vector on the surface. Answer: ωδB2

0/4µ0.

Problem 16.3. Find how the Leontovich boundary conditions transform into
a frame moving with relativistic velocity v parallel to the metal surface in the
direction perpendicular to the magnetic field (beam frame).

25



Lecture 17

Plane electromagnetic
waves and Gaussian beams

Problem 17.1. At time t = 0 the electromagnetic field in free space is given
by functions E0(r) and B0(r) (note that ∇ ·E0 = ∇ ·B0 = 0). Find the field
at time t. [Hint: represent E(r, t) and B(r, t) as integrals over plane waves.]

Problem 17.2. A plane electromagnetic wave propagates at some angle in a
frame moving with velocity βc along the z axis. The magnitude of the Poynting
vector at some location in the wave is equal to S′. Show that in the laboratory
frame the magnitude of the Poynting at this location is given by the following
equation

S =
S′

γ2(1− β cos θ)2
, (17.1)

where θ is the angle between the direction of propagation in the lab frame and
the z axis.

Problem 17.3. Prove that the function u(r, t) = f(r − ct)/r where r is the
distance to the origin of the coordinate system, satisfies the scalar wave equation
∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2 − (1/c2)∂2u/∂t2 = 0, if r > 0.

Problem 17.4. Calculate the longitudinal electric field Ez for a Gaussian laser
beam using the equation ∇ ·E = 0.

Problem 17.5. Show that the energy flux (the Poynting vector integrated over
the cross section of the beam) of a Gaussian laser beam is equal to

π

4Z0
E2

0w
2
0 . (17.2)
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Problem 17.6. A laser pulse has an energy of 1 J and duration 100 fs. It is
focused into a spot of radius 10 µm. Find the magnitude of the electric field in
the focus.

Problem 17.7. Expand the laser field over plane waves, for the laser pulse
described in the previous problem.



Lecture 18

Radiation and retarded
potentials

Problem 18.1. Find solutions of equation

c2t′2 = (z − v(t− τ))2 + x2 + y2 , (18.1)

and analyze them.

Problem 18.2. Find ∂R/∂t and ∇R. Show that

∇tret = − n

c(1− n · βret)
. (18.2)

The operator ∇ here is understood as x̂∂/∂x+ ŷ∂/∂y + ẑ∂/∂z.

Problem 18.3. A point charge is at rest for t < 0. It is then uniformly accel-
erated during time interval ∆t with acceleration a, and moves with a constant
velocity v = a∆t at t > ∆t. Using the retarded potentials find the electromag-
netic field in space at t > ∆t. Assume v � c.

Problem 18.4. Verify that the Liénard-Wiechert potentials can now be derived
from the retarded potentials assuming ρ(r, t) = qδ(r − r0(t)) and j(r, t) =
qv(t)δ(r − r0(t)) with v = dr0/dt.
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Lecture 19

Scattering of
electromagnetic waves

Problem 19.1. Prove that the ratio qE0/mωc is a Lorentz invariant—it does
not change under the Lorentz transformation (in other words, it is the same in
any coordinate system moving relative to the laboratory reference frame).

Problem 19.2. Prove the equation

|n×E0|2 = E2
0(1− sin2 θ cos2 φ) . (19.1)

Problem 19.3. Consider scattering of an electromagnetic wave on a charge q
that is attached to an immobile point through a spring, and can oscillate with
the frequency ω0. Find the scattering cross section as a function of frequency
of the incident wave ω.

Problem 19.4. In the derivation above (about light pressure, p.155 in the
notes), we neglected the term qv × B where v is given by the real part of
equation

v =
iq

mω
E0e

−iωt . (19.2)

Show that 〈v ×B〉 = 0.

Problem 19.5. Estimate the pressure of the solar light on the surface of the
Earth. The solar radiation power is about 1 kW/m2.

Problem 19.6. R. Ruth and Z. Huang proposed to use Thomson scattering
in a compact electron ring as a source of intense X-ray radiation (PRL 80 976
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(1998)). The electron energy in the ring is 8 MeV, the number of electron in the
bunch is 1.1 ·1010, the laser energy is 20 mJ, the laser pulse length is 1 mm, and
the laser is focused to the spot size 25 micron. Estimate the number of photons
from a single collision of the laser pulse with the electron beam.



Lecture 20

Synchrotron radiation

Problem 20.1. Find asymptotic dependence By(t) for |t−r/c| � ρ/cγ3, given

By =
Z0q

πrρ

γ−2 − ξ2
(ξ2 − γ−2)3

. (20.1)

Problem 20.2. Prove that the area under the curve By(t) is equal to zero

(that is
∫ t=∞
t=−∞By(t)dt = 0), again with

By =
Z0q

πrρ

γ−2 − ξ2
(ξ2 − γ−2)3

. (20.2)

Problem 20.3. Simplify the equation

d2W
dωdΩ

=
q2Z0

12π3

(ρω
c

)2( 1

γ2
+ ψ2

)2 [
K2

2/3(ζ) +
ψ2

1/γ2 + ψ2
K2

1/3(ζ)

]
, (20.3)

in the limit ψ � 1/γ. Here,

ζ ≡ ωρ

3c

(
1

γ2
+ ψ2

)3/2

. (20.4)

Make a plot of the quantity ω−2/3d2W/(dωdΩ) versus the quantity ωρψ3/c.
Infer from these equations that the angular spread of the radiation at frequency
ω � ωc is of order of (c/ωρ)1/3.

Problem 20.4. Calculate RF power needed to compensate the synchrotron
radiation in the High Energy Ring of PEP-II. The parameters for the PEP-II
high energy ring are: beam energy E = 9 GeV, average current I = 1 A, and
ρ = 174 m in the bends. [Hint: because average current and not total charge
is specified, the actual circumference is irrelevant; only the total length of the
bends matters.]
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Lecture 21

Undulator radiation

Problem 21.1. Integrate the equation

dP
dΩ

=
Z0

4π2

q4γ4B2
0

m2

(1 + γ2θ2)2 − 4θ2γ2 cos2 φ

(1 + γ2θ2)5
(21.1)

over φ and find dI/dθ. Using the relation

ω =
2γ2kuc

1 + γ2θ2
(21.2)

between the frequency and the angle show that the intensity of the radiation
per unit frequency is

dP
dω

=
3P0

ω0

ω

ω0

(
2

(
ω

ω0

)2

− 2

(
ω

ω0

)
+ 1

)
(21.3)

for ω < ω0 and zero for ω > ω0. The plot of this function is shown in the figure
below.
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Figure 21.1: The spectrum of the undulator radiation given by Eq. (21.3).



Lecture 22

Transition and diffraction
radiation

Problem 22.1. Draw a picture of field lines at time t > 0 for transition
radiation.

Problem 22.2. The usual setup in the experiment for the optical transition
radiation (OTR) diagnostic is shown in Fig. 22.1: the beam passes through a
metal foil tilted at an angle of 45 degrees relative to the beam orbit. Show that in
this case the radiation propagates predominantly in the direction perpendicular
to the orbit. How to solve this problem using the method of image charges?
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Figure 22.3: Transition radiation with foil tilted at 45 degrees.

in a metal foil as shown in Fig. 16.5—a so called diffraction radiation. The
radiation properties depend on the size and the shape of the hole. The complete
electromagnetic solution of the radiation problem in this case requires methods
which are beyond the scope of this course. Below we will present some results
of such a solution and show connection of the diffraction radiation with the
transition one.
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Figure 22.4: Angular distribution of the diffraction radiation for various values
of the parameter aω/cγ (indicated by numbers near the curves). The dashed
line shows the limit a → 0, corresponding to the case of the transition radiation.

It can be shown (see, e.g., [19]) that in the limit γ � 1 and θ � 1 the angular

Figure 22.1: Transition radiation with foil tilted at 45 degrees.



Lecture 23

Formation length of
radiation and coherent
effects

Problem 23.1. Find the vector potential for the radiation from a magnet of
length L� ρ/γ. Hint: introduce the bending angle θ and consider the passage
through the magnet as an instantaneous change in the direction of motion of
the particle (see the transition radiation derivation).

Problem 23.2. Calculate the integral

F (ω) =

∫
d3r′d3r′′λ(r′)λ(r′′) cos

(
ω
n · (r′ − r′′)

c

)
(23.1)

for a “pancake” distribution

λ(r) = δ(z)
1

2πσ2
r

e−(x
2+y2)/2σ2

r . (23.2)

The vector n is directed at angle ψ to the z axis.
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Lecture 24

Synchrotron radiation
reaction force

Problem 24.1. Find the difference φ − cAs behind the particle (ψ < 0) and
show that Es ≈ 0 in that region. [A more accurate calculation shows that
actually 4πε0Es ≈ q/8ρ2 in that region.]

Problem 24.2. Find the value of Es(s) using the known intensity of the
radiation given by

P0 =
2r0mc

2γ4c

3ρ2
. (24.1)

Does it agree with the value shown in the Figure below? If not, explain the
discrepancy.
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Figure 24.1: The radiation reaction field near the charge; the distance is mea-
sured in units of 3γ3/2ρ, and the field is measured in units of qγ4/4περ2.



Lecture 25

Waveguides and RF cavities

Problem 25.1.Calculate TM modes in a rectangular waveguide with cross
section a× b.

Problem 25.2. Follow up on the problem 25.1 and derive TE modes in a
recutangular waveguide by applying transformation (E,B) → (cB,−E/c) to
TM modes and satisfying the boundary conditions on the wall

Problem 25.3. Consider a point charge passing through a cylindrical cavity
where a fundamental mode is excited with amplitude E0. Calculate the maxi-
mum energy gain for the charge.

Problem 25.4. Estimate the electromagnetic pressure in a cavity with E = 20
MV/m.

Problem 25.5. The radius of a cylindrical cavity is changed by a small quantity
δa, and the length is changed by δL. Consider this as a deformation of the
cavity shape and find the frequency change using Slater’s formula. Verify that
the result agrees with equation

ω = j1
c

a
. (25.1)

Problem 25.6. Find the loss factor for the fundamental mode of the cylindrical
cavity.
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Lecture 26

Laser acceleration in
vacuum. Inverse FEL
acceleration

Problem 26.1. Prove that W = 0 even if v = c.

Problem 26.2. Prove the statement in the previous paragraph for β = 1. The
modified integral to consider then becomes

∆W∞ = ReiE0x0qe
ikz0

∫ ∞
−∞

dξ

(1 + iξ)2
e−x

2
0/ω

2
0(1+iξ) . (26.1)

Problem 26.3. Calculate the contribution to ∆W of the reflected part of the
laser field.

Problem 26.4. Assume that you are given a laser with a given energy EL,
frequency ω and duration τ of the laser pulse. Optimize parameters of a laser
acceleration experiment to achieve the maximum energy gain for relativistic
particles. Express the energy gain in terms of EL, ω and τ .

Problem 26.5. Take the the following parameters of the IFEL experiment
from Ref. PRL 92 194801 (2005): beam energy 30 MeV, laser pulse length 2
ps, laser energy 0.5 mJ, laser focused spot size 110 µm, undulator period 1.8
cm, number of periods 3, K = 0.6, and estimate the amplitude of the energy
modulation of the beam.
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